知识教学历来是课堂教学的重点,有效的教知识则是教学研究的永恒主题.以下以中考数学“开放式问题”的复习设计与反思为例,与同行们交流.

一、以问题情境为中心组织复习实例

[问题情景1]:在四边形ABCD中,AC与BD相交于点O,如果只给出条件“AB∥CD”,那么判定四边形ABCD为平行四边形可以补充的条件是哪些?

学生经过思考,提出了不同的方法,教师把学生们的答案汇总后用实物投影在屏幕上.

方法1:若补充条件“∠ABC=∠ADC”,则四边形ABCD一定是平行四边形.

方法2:若补充条件“AD∥BC”,则四边形ABCD一定是平行四边形.

方法3:若补充条件“∠BAC=∠DCA”,则四边形ABCD一定是平行四边形.

方法4:若补充条件“AB=CD”,则四边形ABCD一定是平行四边形.

方法5:若补充条件“∠DAC=∠BCA”,则四边形ABCD一定是平行四边形.

方法6:若补充条件“∠DAB=∠DCB”,则四边形ABCD一定是平行四边形.

方法7:若补充条件“BC=AD”,则四边形ABCD一定是平行四边形.

方法8:若补充条件“∠DBA=∠CAB”,则四边形ABCD一定是平行四边形.

方案9:若补充条件“AO=CO”,则四边形ABCD一定是平行四边形.

教师:同学们提了很多有价值的方法,这些方法中是否有你不赞同的?如果有,讲出你的理由.

学生1:方案7不可行,举个反例,四边形ABCD可能是等腰梯形.

学生2:方案8是错误的,因为不符合平行四边形的识别.

教师:很棒!说明你们对平行四边形的性质与识别理解是很深刻的,还有同学对上述方法有异议吗?

学生3:方案3是错误的.因为AB∥CD可推出∠BAC=∠DCA,相当于这两个是同一个条件.

教师:回答得很棒!你讲得很正确.还有同学对上述方法有异议吗?